REPLACEMENT MODELS

- The replacement policy consists of calculating the increased operating cost, forced idle time cost together with the cost of replacing with new equipment.
- Also, replacement of items such as electric bulbs,radio tubes etc which does not deteriorate with time but fail suddenly.

MODELS:

- Replacement of items that deteriorate i.e.whose maintenance costs increase with time
- Replacement of items that deteriorate

 i.e.whose maintenance costs increase with
 time and value of money also changes
- Replacement of items that fail suddenly
- -- Individual repl policy in which an item is replaced immdly after it fails

-- Gp repl policy in which all items are replaced whether they have failed or not ith a proviso that if any item fails before the optimal time, it may be individually replaced

REPLACEMENT MODELS

(a) When t is a continuous variable

n

Let, C= Capital Cost of Item S= Scrap Value Tavg= Avg. annual cost of item

n= no. of yrs item is to be in use

f (t) = operating & maint cost of item at time t

To find n that minimises T (n) = Total cost incurred during n years

0

Annual cost of item at any time t = C-S + f (t)dt

 $Avg annual costⁿ = Tavg = <math>\frac{1}{4} \{ (c-s) + \int f(t) dt \} --- (1)$

diff wrt n (for Tavg to be min) and equating to zero

• d (Tavg) = d [1 (c-s)] + d [1
$$\int$$
 f(t) dt]
• dn dn n dn n 0

• = $\frac{-1}{n^2}(c-s) + [\frac{f(n)}{n} - \frac{1}{n^2} \int f(t) dt] = 0$ • n^2

• Or
$$\underline{1}$$
 (c-s) + $\underline{1} \int f(t) dt = \underline{f(n)}$
 n^2 n^2 n

 $f(n) = \frac{1}{1}[(c-s) + \int f(t) dt] = Tavg from (1)$ n = 0

f(n) = <u>1</u>[(c-s) + ∫f(t) dt] = Tavg from (1) n

- Items should be replaced when avg annual cost becomes equal to current maint cost.
- (b) When t is a discrete variable

•
$$T(n) = (C-S) + \sum_{n=1}^{\infty} f(t) dt$$

• (Total cost incurred during nyrs)

0

 Avg annual cost incurred on item= <u>1</u> [(C-S ∑f (t)dt] n

Without proof we can state that n is optimal at least avg annual cost

PURCHASE PRICE = Rs. 7000 = C

YEAR		1	2	3	4	5	6	7	8
MAINT COS	ST	900	1200	1600	2100	2800	3700	4700	5900
RESALE VA	LUE	4000	2000	1200	600	500	400	400	400
WHEN SHC	OULD MACHI	NE BE REF	PLACED						
YEAR	RESALE	C-S	ANNUAL		∑ f (t)	T.C.		AVG ANN	IUAL
OF SERVICE	E VALUE		MAINT COST	f (t)		[C-S)+ f (t)]	COST	
								<u>1</u> [C-S+∑	f (t)]
								n	
1	4000	3000	900		900	3900		3900	
2	2000	5000	1200		2100	7100		3550	
3	1200	5800	1600		3700	9500		3166.67	
_4	600	6400	2100		5800	12200		3050	
5	500	6500	2800		8600	15100		3020	
6	400	6600	3700		12300	18900		3150	
7	400	6600	4700		17000	23600		3371.43	
8	400	6600	5900		22900	29500		3687.50	

MACHINE TO BE REPLACED AT END OF 5 YRS

TIME VALUE OF MONEY IS CONSIDERED

$$F= P (1+i)^{n} \text{ or } P = \underbrace{F}_{} = F (p/f, v \%, n)$$

$$(1+i)^{n}$$

$$(1+i)^{n}$$

$$V = \underbrace{1}_{} Vr = \underbrace{1}_{} (1+i)^{r}$$
This is called discounting factor
$$0 \quad 1 \quad 2 \quad 3 \quad n-1 \quad n$$

$$R1 \quad R2 \quad R3 \quad Rn$$

$$C= PURCHASE PRICE OF M/c \cdot R1, R2 ---- Rn = RUNNING$$

$$COST IN \quad 1^{st}, 2^{nd} ----- n \quad t^{h} \text{ year of machine.}$$

$$PAYMENTS ARE MADE AT BEGINNING OF EACH YEAR$$

$$P.W. = C+R1 + \underbrace{R2}_{} + \underbrace{R3}_{} + ------ \underbrace{Rn}_{} (1+i)^{n-1}$$

= $C+R_1+R_2V+R_3V^2+---.R_nV^{n-1}$

M/c SHOULD BE REPLACED IF NEXT PERIOD COST IS GREATER THAN THE WEIGHTED AVG OF PREVIOUS COSTS

 $IF Rn+1 < C + \sum_{r=1}^{r} R_r V^{r-1}$ -- ------- $\sum_{r=1}^{r-1} V^{r-1}$

M/c SHOULD NOT BE REPLACED

COST OF MACHINE = Rs. 500

OP & MAINT COST = 0 IN FIRST YEAR & INCREASES BY Rs. 100 EVERY YEAR

R= 5%, WHEN SHOULD THE M/c BE REPLACED

MACHINE SHOULD BE REPLACED AFTER 3rd YR AS 300 > 217.61

GROUP	REPL. POLICY			
END OF	COST OF REPL. IOD UNITS	COST OF REPL UNITS INDIV.	TOTAL	AVA COST OFFIC
WEEK	AT A TIME	PERIOD	COST Pate	PIA
A	B	C	2 D	
I	300	7×9=63	363	363
2	300	(7+12)×9=171	471	235.50
3	300	(7+12+14) ×9= 297	597	199.00
L _y	300 (7+12+14+21)29:486	786	196.50
¢,	300 (7	+ + 27)×9: 729	1029	205.80
6	300 (7	+ + 80) ×9 = 99	9 1299	216.50
÷	300 17	++ 25)×92 1	226 15	26 217.71
(11	DIV REPL COST	- 8097		
(5)	MULT. REPL CO	67 - Roz)		
5	ROUP REPL	ERIOD - 4108	TEHS	
	NDIVIDUAL R	EPLACEMENT COST	WEEK	= RS 207.
	שי או או או	REPL COST) IDEEL	= 85 19	6.50 -
	REPLACEME	NT ONCE IN 4	WEEK	S & INDIV.
	REPL OF	FAILURES DURIN	9 THIS	4 WEEK
	PERIOD			

When does indiv replacement become more economical.

Let x be the gp replacement price for the bulb

Then, Rs 207 < 100*x+9(7+12+14+21)

4

Or x> 3.42

The replacement cost per bulb in gp repl policy should be greater than Rs 3.42.In such case indiv repl policy is more economical #The following mortality rates have been observed in an installation of 1000 bulbs:
End of week: 1 2 3 4 5 6
Prob of failure: .09 .25 .49 .85 .97 1.00
Indiv prob .09 .16 .24 .36 .12 .03
Find the cost of

- Individual replacement
- Group replacement
- At what gp replacement price per bulb would individual replacement become preferable

Let Ni = no.of replacements made at end of ith week.

No = 1000

- N1 = Noxpi = 1000x.09 = 90
- N2 = Noxp2 +N1p1 = 1000x.16+90x.09= 168
- N3 =Noxp3+N1XP2+N2P1=1000X.24+90X.16
- +168X.09 = 269
- N4=Noxp4+N1Xp3+N2Xp2+N3Xp1
- = 1000x.36+90x.24+168x.16+269x.09 = 432
- N5=Noxp5+N1xp4+N2Xp3+N3Xp2+N4Xp1 =

=274

- N6=Noxp6+N1xp5+N2xp4+N3Xp3+N4Xp2+N5xp1
- = 1000x.03+90x.12+168x.36+269x.24+432x.16+ 274x.09= 260
- N7= Noxp7+N1xp6+N2xp5+N3xp4+N4Xp3+N5xp2
- +N6Xp1=1000x0+90x.03+168x.12+269x.36+432x
- .24+274x.16+260x.09 = 291

No. of bulbs failing increase till the 4th week then decreases and increases again from 7th week onwards.Thus N will continue to oscillate till a steady state is reached

Optimal gp replacement interval

End of week Total cost of gp repl Avg cost/week 1 1000x.70+90x3=970970 1000x.70+(90+168)x3=14742 737 3 1000x.7+(90+168+269)x3=2281 760.33 1000x.7+(90+168+269+432)x3=3577 894.25 4 As the avg minimum cost is in 2nd week, it is optimal to have gp replacement after every two weeks

Individual Replacement policy:

- Avg (expected)life of light bulbs = $\sum ip_i$
- =1x.09+2x.16+3x.24+4x.36+5x.12+6x.03=3.35wks
- Avg no. of failures per week = 1000/3.35=299
- Cost of indiv repl of bulbs per week = 299x3=Rs897
- Cost of gp repl per week = Rs 737
- It is advisable to adopt the policy of group replacement

At what cost of gp repl policy will indiv repl become economical

Let y be the gp repl cost per bulb

Rs 897< 1000*y +3(90+168)

2

or y> Rs 1.02