REPLACEMENT MODELS

- The replacement policy consists of calculating the increased operating cost, forced idle time cost together with the cost of replacing with new equipment.
- Also, replacement of items such as electric bulbs,radio tubes etc which does not deteriorate with time but fail suddenly.

MODELS:

- Replacement of items that deteriorate i.e.whose maintenance costs increase with time
- Replacement of items that deteriorate i.e.whose maintenance costs increase with time and value of money also changes
- Replacement of items that fail suddenly
-- Individual repl policy in which an item is
replaced immdly after it fails
-- Gp repl policy in which all items are replaced whether they have failed or not ith a proviso
that if any item fails before the optimal time, it may be individually replaced

REPLACEMENT MODELS

(a) When t is a continuous variable

Let, C= Capital Cost of Item
S= Scrap Value
Tavg= Avg. annual cost of item
$n=$ no. of yrs item is to be in use
$\mathrm{f}(\mathrm{t})=$ operating \& maint cost of item at time t
To find n that minimises $\mathrm{T}(\mathrm{n})=$ Total cost incurred during n years
Annual cost of item at any time $t=C-S+[f(t) d t$ 0
n
Avg annưal cost $=$ Tavg $=\frac{1}{h}\left\{(c-s)+\int_{0}^{\int} f(t) d t\right\}---(1)$

- diff wrt n (for Tavg to be min) and equating to zero
- $\frac{\mathrm{d}}{\mathrm{dn}}(\operatorname{Tavg})=\frac{\mathrm{d}}{\mathrm{d}}\left[\frac{1}{\mathrm{n}}(\mathrm{c}-\mathrm{s})\right]+\frac{\mathrm{d}}{\mathrm{dn}}\left[\frac{1}{\mathrm{n}} \iint_{0}^{\mathrm{f}}(\mathrm{t}) \mathrm{dt}\right]$ n
- $=\frac{-1}{n^{2}}(c-s)+\left[\frac{f(n)}{n}-\frac{1}{n^{2}} \int_{0}^{f}(t) d t\right]=0$
- Or $\underset{n^{2}}{\underline{1}}(c-s)+\underset{n^{2}}{1} \int f(t) d t=\frac{f(n)}{n}$
$f(n)=\frac{1}{n}\left[(c-s)+\int_{0}^{n} f(t) d t\right]=$ Tavg from (1)
- $\mathrm{f}(\mathrm{n})=\underline{1}\left[(\mathrm{c}-\mathrm{s})+\int \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=$ Tavg from (1)
n
- Items should be replaced when avg annual cost becomes equal to current maint cost.
- (b) When t is a discrete variable

$$
T(n)=(C-S)+\sum_{0} f(t) d t
$$

- (Total cost incurred during nyrs)
- Avg annual cost incurred on item= $\underline{1}\left[\left(C-S \sum f(t) d t\right]\right.$

Without proof we can state that n is optimal at least avg annual cost

PURCHASE PRICE $=$ Rs. $7000=\mathrm{C}$

YEAR	1	2	3	4	5	6	7	8
MAINT COST	900	1200	1600	2100	2800	3700	4700	5900
RESALE VALUE	4000	2000	1200	600	500	400	400	400
WHEN SHOULD MACHINE BE REPLACED								

YEAR	ReSALE	C-S	ANNUAL	$\Sigma \mathrm{f}(\mathrm{t})$	T.C.	AVG ANNUAL
OF SERVICE	VALUE		MAINT COST $\mathrm{f}(\mathrm{t})$		$[C-S)+\mathrm{f}(\mathrm{t})]$	COST
						$\underline{1}\left[C-S+\sum^{n} f(t)\right]$
						n

1	4000	3000	900	900	3900	3900
2	2000	5000	1200	2100	7100	3550
3	1200	5800	1600	3700	9500	3166.67
4	600	6400	2100	5800	12200	3050
5	500	6500	2800	8600	15100	3020
6	400	6600	3700	12300	18900	3150
7	400	6600	4700	17000	23600	3371.43
8	400	6600	5900	22900	29500	3687.50

MACHINE TO BE REPLACED AT END OF 5 YRS

TIME VALUE OF MONEY IS CONSIDERED

$$
\begin{aligned}
& F=P(1+i)^{n} \quad \text { or } \quad P=\underset{(1+i)^{n}}{F} \quad F(p / f, v \%, n) \\
& (1+\mathrm{t})^{\downarrow} \downarrow \downarrow \downarrow \\
& V=\frac{1}{(1+i)} \quad \text { or } \quad V r=\quad \underset{(1+i)^{r}}{\frac{1}{1}}
\end{aligned}
$$

This is called discounting factor

0	1	2	3	$n-1$	n
R1	R2	R3		$R n$	

C= PURCHASE PRICE OF M/c. R1, R2 ---- Rn = RUNNING
COST IN $\quad 1^{\text {st }}, 2^{\text {nd }}----n^{\text {th }}$ year of machine.
PAYMENTS ARE MADE AT BEGINNING OF EACH YEAR

$$
\text { P.W. }=C+R_{1}+\frac{R_{2}}{(1+i)^{1}}+\frac{R_{3}}{(1+i)^{2}}+\cdots----\frac{R_{n}}{(1+i)^{n-1}}
$$

$=\mathrm{C}+\mathrm{R}_{1}+\mathrm{R}_{2} \mathrm{~V}+\mathrm{R}_{3} \mathrm{~V}^{2}+---. \mathrm{Rn}^{\mathrm{V}} \mathrm{V}^{-1}$

WE CONCLUDE THAT

$$
R n+1>\quad \frac{C+R_{1}+R_{2} V+R_{3} V_{2}+-\cdots-R_{n} . V^{n-1}}{1+V+V^{2}+-\cdots---V n-1}
$$

n
$R n+1>C+\sum_{r=1} R_{r} V^{r-1}$

$$
\sum_{r=1} \mathrm{~V}^{r-1}
$$

M/c SHOULD BE REPLACED IF NEXT PERIOD COST IS GREATER THAN THE WEIGHTED AVG OF PREVIOUS COSTS

M/c SHOULD NOT BE REPLACED

COST OF MACHINE = Rs. 500
OP \& MAINT COST = 0 IN FIRST YEAR \& INCREASES BY Rs. 100 EVERY YEAR
R= 5%, WHEN SHOULD THE M / c BE REPLACED

YR OF	MAINT	DISCOUNT	DISCOUNT	CUM. TOTAL	DIVIDING	WEIGHTED AVG
SERVICE	COST	FACTOR	COST	DI\$COUNTED COST	FACTOR	ANN. COST
	Rr	V^{r-1}	$R_{r} V^{r-1}$	$C+\sum R_{r} V^{r-1}$	$\sum V^{r-1}$	$C+\sum R_{r} V^{r-1}$
				$V_{r=1}^{r-1}$		

1	0	1	0	500	1	500
2	100	0.9524	95.24	595.24	1.9524	304.88
3	200	0.9070	181.40	776.64	2.85	217.61
4	300	0.8638	259.14	1035.78	3.72	278.20
5	400	0.8227	329.08	1364.86	4.54	300.28
MACHINE SHOULD BE REPLACED AFTER $3^{\text {rd }}$ YR AS $300>217.61$						

When does indiv replacement become more economical.
Let x be the gp replacement price for the bulb
Then, Rs $207<\underline{100 * x+9(7+12+14+21)}$
4
Or $x>3.42$
The replacement cost per bulb in gp repl policy should be greater than Rs 3.42.In such case indiv repl policy is more economical
\#The following mortality rates have been observed in an installation of 1000 bulbs:

End of week:

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

Prob of failure: . 09.25 . 49 . 85 . 97 1.00
Indiv prob
. 09.16 . 24.36 . 03
Find the cost of

- Individual replacement
- Group replacement
- At what gp replacement price per bulb would individual replacement become preferable

Let $\mathrm{Ni}=$ no.of replacements made at end of ith week.

No = 1000
N1 $=$ Noxpi $=1000 x .09=90$
N2 = Noxp2 +N1p1 = 1000x.16+90x.09= 168
N3 =Noxp3+N1XP2+N2P1=1000X.24+90X. 16
+168X. $09=269$
N4=Noxp4+N1Xp3+N2Xp2+N3Xp1
$=1000 x .36+90 x .24+168 x .16+269 x .09=432$
N5=Noxp5+N1xp4+N2Xp3+N3Xp2+N4Xp1 =
$=274$
N6=Noxp6+N1xp5+N2xp4+N3Xp3+N4Xp2+N5xp1
= 1000x.03+90x. $12+168 x .36+269 x .24+432 x .16+$
$274 x .09=260$
N7= Noxp7+N1xp6+N2xp5+N3xp4+N4Xp3+N5xp2 $+N 6 X p 1=1000 x 0+90 x .03+168 x .12+269 x .36+432 x$
$.24+274 x .16+260 x .09=291$
No. of bulbs failing increase till the $4^{\text {th }}$ week then decreases and increases again from $7^{\text {th }}$ week onwards. Thus N will continue to oscillate till a steady state is reached

Optimal gp replacement interval

End of week Total cost of gp repl Avg cost/week
1 $1000 x .70+90 \times 3=970$ 970

2
1000x. $70+(90+168) \times 3=1474$
737
3 $1000 \times .7+(90+168+269) \times 3=2281760.33$

4 1000x. $7+(90+168+269+432) \times 3=3577894.25$
As the avg minimum cost is in $2^{\text {nd }}$ week, it is optimal to have gp replacement after every two weeks

Individual Replacement policy:
Avg (expected)life of light bulbs $=\sum i p_{i}$
$=1 x .09+2 x .16+3 x .24+4 x .36+5 x .12+6 x .03=3.35 w k s$
Avg no. of failures per week $=1000 / 3.35=299$
Cost of indiv repl of bulbs per week = $299 \times 3=$ Rs 897
Cost of gp repl per week = Rs 737
It is advisable to adopt the policy of group
replacement

At what cost of gp repl policy will indiv repl become economical
Let y be the gp repl cost per bulb
Rs $897<\underline{1000 * y+3(90+168)}$
2
or $\mathrm{y}>$ Rs 1.02

